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Abstract—The determination of the moment-curvature characteristics for stiffened plates buckling away
from slender stiffener outstands is seen as an important step towards developing simple engineering
approaches to the design problem.

The main aspects of a recent programme of research carried out to provide this information on
moment-curvature relationships are presented here. A non-linear large deflection analysis of an analytical
model has been developed, in which the non-linear equilibrium and boundary conditions are reduced to a
linear form by employing a perturbation scheme, and then discretized using pertinent difference expres-
sions. Finally the sequence followed for the solution of the resulting linear simultaneous algebraic equations
is outlined.

The validity of this analysis has been demonstrated by comparing the theoretical results with typical
results taken from an extensive series of experiments. Some of the important mechanics of behaviour and
their implications are also discussed.

1. INTRODUCTION
There has over the past decade been a rapid increase in the use of thin stiffness steel panels in
Civil Engineering structures. In box girder bridges and in even larger scale in marine structures
the economies that can be achieved in the use and careful design of such components are
considerable. But at the same time, as this process of optimization is continued, the forms of
behaviour of these systems become increasingly complicated.

Van der Neut[l] was the first to examine analytically the problem of mode interaction
arising when the local and overall critical modes of a class of box columns occur at
approximately the same load levels. His demonstration of the unstable and consequently
imperfection sensitive buckling that can occur in these systems drew attention to an effect that
had been intuitively understood for wide classes of structures for a much longer time. The
result has been an increasing research effort towards understanding more fully the nature of the
mechanics displayed by simultaneous and near simultaneous buckling of structures composed
of plates, especially that of the stiffened plate [2-4).

One of the major problems for the designer of systems of this type is that a complete
understanding of their behaviour can only be achieved through the solution of highly non-linear
differential equations. It has not always been terribly clear how the approximate solutions of
these governing equations would relate to the forms of behaviour displayed by practical
structures. This, coupled with the fact that failure when it occurs is violent and with little
warning that is about to occur, makes it understandable why in design recommendations there
has been a tendency to avoid those parametric ranges that produce such conditions(S]. But in
consequence the parametric ranges that offer the greatest potential for improving efficiency are
also being avoided.

One approach to the design of these systems that avoids the necessity of performing these
complex forms of interactive postbuckling analysis, is that based on the use of the reduced
modulus load [6,7). This has now been fully described for the case of the box column and
stiffened plate buckling towards the stiffener outstands [6-8). However, for the case of a plate
buckling away from slender stiffener outstands that are prone to local torsional buckling, see
Fig. 1, the necessary information on the moment-curvature characteristics is as yet not fully
available. The research([9] upon which the following is based has as its aim the provision of this
information.

In what follows the non-linear large deflection equations governing the behaviour of a
simplified model of a typical section of a stiffened panel are reviewed. Employing a continuum
perturbation scheme the non-linear differential equations are reduced to the form of a sequence
of linear equations that are subsequently solved using approximate finite difference methods.
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Fig. 1. Asymmetrically stiffened plate.

Verification of the numerical solution is established by comparisons with a selection of results
from a wide ranging experimental programme. Extensive parametric studies[9] based on this

analysis have provided a rational basis for the optimum design of plates stiffened with slender
outstands.

2. THE PHYSICAL MODEL

The model used is a rectangular plate that has beam supports on both the top and bottom
boundaries, with kinematic conditions assumed on the end boundaries. The system is subjected
to in-plane stresses on its ends that produce a controlled ratio between the overall moment, M
and the axial load, P. To ensure that the botiom edge beam adequately models the action of the
flange of stiffened plates, the out-of-plane displacement at the bottom support is taken to be
zero. The object is to investigate for this model the relationship between the overall moment, M
and the corresponding overall curvature change, «, under different axial loads, P.

This model can be considered as the basic unit of a stiffened plate like that shown in Fig. 1.
When a wide stiffened plate of this type is subjected to a uniform axial loading, a typical
longitudinal stiffener, shown in Fig. 1(b), will buckle locally in the manner illustrated in Fig.
1{c). Once this occurs the overall flexural stiffiness, El, of a typical stiffener will have been
reduced to nEL It is the factor 7 that is referred to as the “reduced modulus factor”. Its
importance in controlling the incremental behaviour of imperfect systems of this type is now
well established. To determine » for the present system it is enough to consider the section of
stiffener plate between two consecutive transverse stiffeners. In this context, therefore, the top
edge beam, shown in Fig. 2, would represent the possible edge stiffening on the stiffener

longitudinal and transverse stiffeners.

3. THEORETICAL MODEL
The analysis that follows is based on the von Karman large deflections theory of thin plates.
With the convention for positive stress and moment resultants acting on a typical plate element,
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Fig. 2. Simplified analytical model.
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Fig. 3. Notation and positive convention for plate element actions.

shown in Fig. 3, the plate mid-surface stress and moment resultants may be written
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When substituted into the force and moment equilibrium equations for the plate element shown
in Fig. 3, the six equilibrium equations may be reduced to the non-linear thin plate equilibrium
equations

PU 1-v3*U 1+v 3V aWaFW 1-viWP3W 1+viWa'W
a_"+ T o Ty e 2 ax a2 ayay 0 %

a’V+1--va’V 1+v02U+6W¢92W 1-vdWaW 1+vaWaW
By? 2 ox? 2 axdy  dy dyr 2 ay oax* 2 dx dxdy

2
DVW - k[ U l(ﬁ_“f>+ .l (aW) ]%ur’ (I_V)k[au av+awaw] W

=0 (3b)

x 2 ay 2"\ gy ax " ax dy Jaxdy
AV 1(aW\' U 1 (g}g)]azw
k[ay+2( )+ ax+2" e P 0. (3¢)

Here (U, V, W) are the mid-surface displacements in the (x, y, z) coordinate directions, V*W is
the biharmonic operator and

__Et
k= =" (4a)

-V
Ef

D=1

(4b)

are respectively the extensional and flexural rigidities of the plate, with modulus of elasticity, E
and Poisson’s ratio, ».

Equilibrium considerations of the top edge beam, shown in Fig. 4, taking into account the
effects of the plate stress and moment resultants acting on the beam-plate intersection, requires

e, =0 (Sa)
%—m,,«l—;(q + ,,"a‘;ﬂn,,"g) 0 (5)
ﬁ%{h y— = g (5d)

Subscript ¢ refers to displacements computed at the top beam centroidal axis. With the edge
beam axial force and moments related to these displacements given by

N, = EA, ["U‘ 3 (aa‘f') ] (62)
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Fig. 4. Notation and positive convention for beam element actions.
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(6b)

(6¢)

(6d)

and with the compatibility of the top beam-plate intersection and centroidal axis displacements

requiring[9]

_L3V
2 0x
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W,-W+zay
W, _ W
ay ay

the edge beam-plate interaction conditions (5) become
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In these top boundary conditions the unsubscripted displacements are those at the edge
beam-plate intersection; A, is the cross-sectional area, GJ; is the torsional stiffness and I,,,, I,
the second moments of area of the top beam about the y and z axes respectively.

Following the procedure established for the top beam support, but making the assumption
that the bottom beam has a bending stiffness about the y-axis which is very large in comparison
with that of the plate, the plate edge conditions at the bottom longitudinal boundary may be
written

U

EA"[T" zb'a'};] 2“"")"[61] (39: aﬁZVaavyV] 0 (92)
G gy + D G + v 5 |4 {0 [+ s
K[ (Gr) - (5 |5
—5- ok [T+ S SRR TV} 9b)
—%%§=o 9)
L Sk [ 53 (5r) + 5430 (5F) ]
- [ E T SR - o0

Again, displacements are those at the edge beam-plate intersection, while all geometric

quantities for the bottom beam have the subscript b, and have the same meanings as for the top

beam. It is perhaps worth noting that a free top longitudinal plate edge condition is obtained

when the top beam dimensions are put equal to zero. With the bottom beam dimensions equal

to zero, the bottom plate edge conditions would reduce to those of the classical simple support.
At the ends the boundary conditions are assumed to be

U—a-a§=o (102)
V=0 (10b)

W=0 (10c)
7¥=o (10d)

where a and B are constants representing translation and rotation of the end supports
respectively. They are defined by prescribing the axial force, P and the bending moment, M,
due to the externally applied force system.
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4. CONTINUUM PERTURBATION ANALYSIS

The above non-linear equilibrium and boundary differential equations are converted into an
infinite set of linear differential equations by employing a continuum perturbation method[10].
For this, it is assumed that a single equilibrium path, P,, emerges from the unloaded state (M, U,
V, W)=1(0,0,0,0). Displacement components on this fundamental path, shown in Fig. 5(a), are
distinguished by the superscript F and are assumed to vary linearly with M. Equilibrium
equations (3) when evaluated on path P, become

PUF 1-vd?UF  1+v3®VF _
Fr N T B W v (la)

B2VF 1-vdVF 1+29°UF
ay’ 2 axt 2 axdy

wf=0 (11c)

0 (11b)

which together with the appropriate linearisation of the boundary conditions (8)~(10) yield the
fundamental path displacements (UF, VF, WF).

A secondary path P, emanating from a critical state C, shown in Fig. 5(a), is then most
conveniently studied by introducing the sliding transformations

U=UFRM,x,y)+ulx,y) (12a)
V=VF(M,x, y)+v(x,y) (12b)
W=w(x,y) (12¢)

where (U, V, W) are total displacements, (UF, V¥, WF) are the fundamental path displacements
and (4, v, w) are the transformed displacements. This has the effect of mapping path P, onto the
M-axis, as shown in Fig. 5(b). Substitution of the mapping eqns (12) into the equilibrium
equations and using eqns (11), transforms eqns (3) into the form

i)’u+ —v62u+!+v v
axTT 2 3yl 2 axay
wdtw l—viwd*w 1+vow 3w
LA i Vow LI A A A A 13a
* x':??'+ 2 ox ay: | 2 ay axdy (132)
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Fig. 5. (a) Original and (b) transformed equilibrium paths.
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Progress along a prospective secondary path P,, measured from the critical state C, is
represented by the parameter . With eqns (13) satisfied for all ¢ along the path P,, it follows
that their derivatives with respect to ¢, evaluated at the critical state, must also be satisfied. The
first order derivative yields
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——T -——i—+ ==
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where M. is the critical moment,

" _du
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and
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It has often been pointed out that there is some freedom in the choice of ¢, but that no
general rules can be devised to guide this. The choice in the present paper is

€= W (16a)
where w is the amplitude of the critical mode, so that
Wa=ly Wpmwgmeeenes =w,=----=0. (16b)

It is apparent that eqns (I14a) and (14b) are a set of homogeneous differential equations for
which (u;, v,) =(0,0). Solution of the eigenvalue eqn (14¢c) then yields the critical bending
moment, M, and the critical mode w . In general the solution of the rth order perturbation eqns
(15a) and (15b) is possible, after substitution of the known ith path derivatives, where
i=12,....(r—1). However, the solution of eqn (15c) presents some problems because it
requires the simultaneous determination of M,._; and w,. A method of contraction has been
proposed, both for discrete systems{11] and the present continuum system{10}, that alleviates
this problem. For the present problem this method reduces to the rth perturbation equation for
w , that is eqn (15¢), being multiplied by w,; the product is then integrated over the domain of
the structure and provided the equilibrium equations are derivable from a potential energy
function (and in this case they are), the terms involving w, drop out, leaving an explicit
expression for M,_, in terms of only known path derivatives[9]
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Once M,_, is determined it is possible to solve the full eqn (15¢) to obtain path derivative w,.
This perturbation sequence, depicted in Fig. 6, can then continue on a similar pattern until
the number of load and displacement path derivatives necessary for acceptable convergence
has been reached.

It can be shown from the preceeding analysis that odd path derivatives of M, 4 and v and
even path derivatives of w vanish. This can be explained physically by the nature of the
problem, in that the behaviour of the model is independent of the sign of € = w. This implies
expansions of the form

M=M, +2M3€ +;4M¢e +720M,¢,e"+'-'- (18a)
U= UF+2uze +24u4e‘+720u¢,e +- (18b)

v=vFs+l veeS 4o (18¢)

3026 +24”“ +720

W= W;€+1

£¥€+ 30 ‘20 Wses 4o (18d)
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Fig. 6. Sequence of operations in perturbation analysis.

The boundary conditions are treated in a similar way, so that when solved together with the
corresponding perturbed equilibrium equations they yield the required solution to the problem.

5. NUMERICAL ANALYSIS
Finite differences model

To facilitate solution the linearised perturbation equations are discretized by replacing the
partial derivatives by pertinent difference expressions.

A rectangular grid is superimposed on the plate with grid spacings given by h, = L/m and
h, = d/n, where m and n are respectively the number of spacings in the x and y coordinate
directions.

The fundamental path displacement components (UF, VF) are defined inside the domain of
differential dependance by the application of finite differences approximations, involving error
terms of order (h%), of the equilibrium eqns (11). It is found that the application of these
equations requires the definition of displacement components at nodal points outside the
physical domain of the problem. These so called ficticious generalised coordinates are defined
by the application of higher order finite difference approximations, with truncation errors of
order (h*), of the perturbed form of boundary conditions (8)-(10) at the nodal points on the
boundaries[9).

Solution of the fundamental path difference equations
Application of the fundamental path difference expressions in the manner described above
results in a set of linear algebraic simultaneous equations of the form

[AJ{UF}=1{a.F} (19)

where [A,] is the matrix of coefficients and {UF} and {q,"} are vectors containing displacement

solution of the postcritical path equations. It is therefore felt that the method employed for the
solution of eqn (19) should take advantage of this property of [A,] for computational efficiency.
Iterative methods of solution had to be excluded, since for each new r.h.s. vector the iterative
process has to be started from the beginning, thus requiring large amounts of computing time. A
direct method is therefore chosen for the solution of the present problem([12}, in which the
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sparseness of [A4,] is utilised by using an efficient indexing format, so that only non-zero matrix
elements need to be in store before and after decomposition.

Solution of the eigen-problem

The finite difference model required for the solution of the eigen-problem can be constructed
in the manner described earlier, by the application of the finite difference approximation of the
first order perturbation eqn (14c) inside the physical domain of the problem, and of the
perturbed form boundary conditions (8b), (8¢c), (9b), (9¢), (10c) and (10d) on the corresponding
boundaries. The resulting system of linear algebraic simultaneous equations can then be written
in the form

[Ad{w.} = Mc[Ag]{w.} (20)

[A.] and [Ag] are matrices of coefficients of the system of equations; {w,} is a vector of
discretized displacement components w ;.
An inverse iteration method[9, 13] has been used for the solution of eigen-equation (20).

Solution of the postcritical path equations

The solution of the postcritical problem consists of three distinct parts in a natural sequence,
depicted in Fig. 6. In the first, the general 4 and v-perturbation eqns (15a) and (15b) are solved
for r=2, 4,... In the second, the contracted eqn (17) is used to obtain the load path
derivatives M,_, with r=3,5,... And finally in the third part the general w-perturbation eqn
(15¢) is solved with r=3,5,...

Discretization of the rth order « and v-perturbation equations and the appropriate boundary
conditions, results in a system of linear simultaneous algebraic equations of the same form as
eqn (19). The r.hs. vector is now a function of known path derivatives of w,; k=
1,3..,r-1, that have been found from the solution of the previous kth order perturbation
equations.

However, the solution of the contracted eqn (17) requires the evaluation of surface integrals
inside the physical domain of the problem and line integrals on the boundaries. This has been
achieved by the use of a two-dimensional form of Simpson’s integration rule, in which the
functionals inside the surface integrals are computed numerically at each of the nodal points,
while the functionals inside the line integrals are computed at the nodal points on the
boundaries. The partial differentials are discretized using difference expressions of order (h*).

With M,_, known, discretization of the rth order w-perturbation equation and the cor-
responding boundary conditions results in a system of linear simultaneous algebraic equations
of the form

(A w,}=1{q.} 2n

where [A,] is the matrix of coefficients of the system of equations, {w,} is a vector of the
discretized displacement path derivatives w,, and {q.’} is a vector of equivalent loading
components, represented by the discretized r.h.s. of the rth order w-perturbation eqn (15c¢).

It is evident by inspection of eqns (14¢) and (15¢) that

[Au) = [ALl - M[Ag] 22)

so that [A,] can be conveniently obtained using eqn (22) immediately after the solution of the
eigen-problem, without having to re-compute the coefficients of the discretized system of the
rth order perturbation equations. Matrix [A,] in the form given by eqn (22) is singular. It is
transformed into a non-singular form with the convenient choice of perturbation parameter
e = w, as described earlier. Solution of eqn (21) is then achieved using the same direct matrix
solution method[12] that was used for the fundamental path.
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6. ACCURACY OF DIFFERENCE SOLUTIONS

Assuming that the behaviour of the structural system under investigation is represented
sufficiently accurately by the equilibrium equations and boundary conditions developed in
Section 4, the main sources of error that could affect the accuracy of the numerical solutions
are truncation errors due to the discretization of the equilibrium equations and the boundary
conditions. A number of researchers that have worked with finite differences approximations
[14,15]), examined the effects of these errors in assessing the numerical accuracy of their
solutions. In general, it has been found[9] that employing higher order boundary analogues
results in superior convergence rates, in comparison with ordinary finite differences ap-
proximations on the boundaries.

To demonstrate the importance of truncation errors arising from the finite difference
discretization of the differential equations, convergence studies were carried out on several
models with varying geometries, yielding much the same results. The following typical results
relate to a model with lateral stiffener spacing L = 120.0 mm, stiffener depth d = 60.0 mm and
stiffener thickness ¢ = 1.50 mm. The flange plate dimensions are b, = 90.0 mm and ¢, = 1.50 mm.
In the case of a top beam b, =5.0mm and ¢ =7.5mm. The material properties are E =
3100 N/mm? and v = 0.40. Solutions were obtained on grids chosen with n =4, 6, 8, 10, 12 and
for all cases m =2n.

Torsional stiffnesses of the bottom flange plate and the top beam, appearing in eqns (9b) and
(8b), are given by

Gjb = m%%cb min (bbtbs, t',bbs) (23)
E 1 . 3 .13
GJ, = m§q min (b, t;b’) (24)
where[16]
= __]92_L . 1 n _ D !L
C, =1 -;;-sbmzl -'?;tnh(2 s,,), s,,—max(tb,bb)
and
11921 3 1 am o\ o bt
C=1 ?s‘"’%m?tanh(z s,), s,—max(t‘,bl).

These particular dimensions and material properties have been chosen so as to correspond with
the experimental model results referred to in the following section.

The converegence rate is examined by investigating the out-of-plane displacement amplitude,
w, and the overall curvature, «, at x =0 (see Fig. 2), when plotted against the externally applied
bending moment, M, shown in Figs. 7 and 8.

The curvature, «, of the theoretical and experimental model is defined as the slope of the
axial strain distribution, over a section in the longitudinal stiffener, evaluated at (x, y) = (0, 0).
The reason for choosing this position is to ensure that the strains are in the tension field where
the strain distribution remains effectively linear after local torsional buckling occurs[9].
Therefore

_ 06y

dy

(25)

x=y=0
where

_aU [ 1[{aW)?
‘“‘E*i(‘ix')'

It has been demonstrated [9) that this experimentally convenient measure of local curvature is
within 4% of the overall curvature measured by the relative rotations of the end boundaries at
x=z=LJ2
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Fig. 7. Convergence studies for a model with a free top longitudinal boundary.
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It can be seen that for all cases the curves corresponding with n = 10 and # = 12 almost
exactly coincide, and therefore a grid with n =12 can be considered to yield effectively
converged results.

Truncation of the perturbation series expansions (18) up to and including the sixth order
term, has been found to be sufficient in providing converged results.

7. TYPICAL THEORETICAL RESULTS AND COMPARISON WITH EXPERIMENTS

Simple small scale Araldite models, similar in shape to the model described in Fig. 2, were
tested to verify experimentally the validity of the theoretical results. Detailed description of
the experimental set-up, procedures and results is given in Ref.[9]. In the theoretical analysis
the torsional stiffness of the bottom beam was chosen as described by eqn {23) to correspond to
the experimental model conditions. The models were tested under pure bending moments.

A comparison between the present theoretical solutions and experimental results is presented
in Figs. 9 and 10 for models with free and beam supported top longitudinal boundaries
respectively. The parameters plotted against the externally applied bending moment, M, are the
out-of-plane displacement amplitude, ¥ and the curvature, x, at (x,y)=(0,0). The close
agreement between theory and experiments indicates that the assumptions made in the analysis
are justified. In particular, the assumptions made concerning the beam-plate interactions and
compatibility of displacements produce results that compare well with experimental conditions.
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Fig. 9. Comparison of theoretical and experimental results for a model with L = 125.0mm, d = 74.0 mm,
t = 1.80 mm, b, = 100.0 mm and ¢, = 1.73 mm.
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It should also be noted here that although the torsional stiffness of the bottom beam, as given
by eqn (23), has been chosen to model the action of the experimental model, a simple
modification can allow it to also model the case of continuity shown in Fig. I(c).

An additional important result that emerged from a study in which the externally applied
axial load, P, was varied systematically over a wide range for a series of models, was that it
produced no significant changes in the pre- and postcritical moment-curvature relationship,
apart from affecting the level of the critical bending moment, M. The results of this study are
summarised in Fig. 11 for the model described in the previous section. It would appear that the
reduced modulus factor, i, which is defined as the ratio of the post-to the precritical slopes of
the moment-curvature graph, is independent of the location of the system within the axial
load-deformation space. Also shown in Fig. 11 is the relative insensitivity of n to large
deformations.

An extensive parametric study[9] showed that the reduced modulus factor for stiffened plates
is very low, being in general under 0.25. This severity in the reduction of 7 is due to the fact
that the bending stiffness of such structures is mainly controlled by the contribution to the
overall second moment of area of the section from the stiffener outstands. So, when the
stiffeners buckle torsionally and their effective contribution decreases considerably, it causes
dramatic reductions in the overall bending stiffness and therefore the reduced modulus factor.
This reduction becomes even more severe in the presence of a top longitudinal beam; the
reason being that the considerable contribution of the top beam to the second moment of area
of the section is almost completely lost after buckling. This is highlighted by comparing Figs. 9
and 10; it is shown that the addition of a top longitudinal beam to the experimental model
resulted in an even further reduction in », from 0.203 to 0.150. These reductions in the reduced
modulus factors of such structures are indicative of the potentially severe imperfection
sensitivity that may arise when axially loaded stiffened plate buckling involves an unstable
coupling between the overall plate mode and a local torsional stiffener mode.

8. CONCLUSIONS

The theoretical non-linear large deflection equations governing the elastic behaviour of the
analytical models and special equilibrium and compatibility equations developed to formulate
theoretically the plate-beam boundary conditions, have been presented.

A linear sequence of perturbation equations has been derived to replace the non-linear
differential equations, using a continuum perturbation approach. They were subsequently
discretized by the introduction of pertinent difference expressions. Following the example of
other researchers, higher order differences have been used to discretize the boundary con-
ditions. It was found that in general this resulted in improved convergence to the exact
solutions as difference grids were refined, with insignificantly increases in computational effort.
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Fig. 11. Influence of externally applied axial compressive force, P, on the critical moment and postcritical
behaviour.
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Comparison with experimental results shows good agreement, even in the advanced post-
critical range, indicating that the theoretical analysis developed in this paper predicts accurately
the behaviour of the physical models.

However, the importance of the present results is that the accurate prediction of the
moment-curvature relationship enables the calculation of the reduced modulus factor for these
models. Its significance is very evident in the analysis of systems that undergo interactive
buckling. Particularly, in the case of stiffened plates buckling away from slender longitudinal
stiffener outstands, the present results can be usefully employed as the basis in deriving simple
engineering approaches, that may avert the necessity of performing highly nonlinear interactive
buckling analyses.
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